
Supplementary Material for

Talking Head Anime 4: Distillation for Real-Time Performance

1 Improved Body Rotator’s Architecture Details

1.1 Overview

We changed the backbones of the half-resolution rotator and the editor to U-Nets with attention [2], and
the architecture is discussed in details in Section 1.2.

There is a small change to how the half-resolution and the editor interface with each other. In THA3,
the half-resolution rotator outputs the posed imaged and an appearance flow. However, the posed image is
used only at training time and discarded at test time. The appearance flow is scaled up to 512 × 512 and
then passed to the editor. In our new version, we modify the editor so that it also takes in the scaled up
version of the posed image. This change is captured in Figure 2.

1.2 U-Net with Attention

The new backbones of the half-resolution rotator and editor are U-Net with attention [2], which are frequently
used in diffusion models. We base our architecture on conditional U-Nets in the diffusion autoencoder paper
by Preechakul et al. [5]. There, the U-Net takes as input a feature tensor, a time value, and a 1D conditioning
vector. The time value and the conditioning vector are mingled with tensors derived from the input feature
tensor through adaptive instance normalization (AdaIN) units [3] that are parts of residual blocks [1]. A
residual block would have two AdaIN units that are applied in succession: the first for time and the second
for conditioning vector. In the diffusion autoencoder paper, the conditioning vector is a 512-dimensional
vector. In our case, the conditioning vector is the 6-dimensional pose vector. (While the full pose vector has
45 parameters, only 6 that concern the movement of the body are relevant to the networks that we modify.)
For our networks, the time value is always 0 and is totally redundant. We kept the code related to time
embedding in place in order to reduce implementation effort.

Figure 1: The modified body rotator module.

1

The configurations for the backbone networks are given in Table 1. Both networks scale down the feature
tensors to 16× 16 before scaling them back up to the original resolution. Attention blocks are only present
at the 16× 16 resolution. The bottleneck part of each network has 4 residual blocks alternating with three
attention blocks. (In other words, there are 3 + 2 = 5 attention blocks in total.) Each attention block has 8
attention heads.

Hyperparameter HRR Editor
image resolution 256× 256 512× 512
base channels 64 32
channel multipliers 1, 2, 4, 4, 4 1, 2, 4, 8, 8, 8
residual blocks per level 1 1
bottleneck residual blocks 4 4
resolution with attention blocks 16 16
attention heads 8 8

Table 1: Configurations of the U-Net with attention backbones for the half-resolution rotator (HRR) and
editor.

The half-resolution rotator and the editor differ not only on the configurations of their backbones but how
the backbones are “wrapped” by extra units so that they conform to the networks’ interfaces. We discuss
these extra units in the two following subsections.

1.3 Half-Resolution Rotator

The new half-resolution rotator now generates a half-resolution posed image in three steps. It (1) warps
the input image to generate one candidate output, (2) directly generates another candidate output, and (3)
alpha blends the two results together. The new architecture is depicted in Figure 2. Note that, in THA3,
the alpha blending step is missing.

More specifically, the half-resolution rotator takes as input:

1. Iresthalf , a 4× 256× 256 RGBA image of the character in rest pose obtained by downscaling the original
input image, and

2. p, a 6-dimensional pose vector.

Because the U-Net with attention backbone takes in a 64×256×256 tensor as input, Iresthalf must be converted
to this shape with a convolution layer. The backbone takes in the converted tensor and produces another
64 × 256 × 256 feature tensor, which is then used to perform several image processing operations. (See
Section 3 of the paper.)

� Warping. The feature tensor is passed to a convolution layer to produce an appearance flow Iflowhalf of

size 2× 256× 256. It is then used to warp the input image (Iresthalf) to produce a warped image Iwarped
half .

� Direct generation. The feature tensor is converted to a 4× 256× 256 RGBA image, denoted by Idirecthalf .

� Blending. The feature tensor is converted to a 1×256×256 alpha map, which is then used to blend the
warped image Iwarped

half and the directly generated image Idirecthalf together. The result is called Iblendedhalf .

The half-resolution rotator outputs Iflowhalf , I
warped
half , Idirecthalf , and Iblendedhalf . These image are used for training.

However, at test time, Iflowhalf and Iblendedhalf are used by the next network, the editor.

1.4 Editor

The new editor now has to take into account one additional input, so we make it fuse the input image and
the two outputs of the half-resolution rotator with a convolution layer before processing the fused tensor

2

Figure 2: The new half-resolution rotator.

Figure 3: The new editor.

3

with the backbone network. The rest of the network remains the same. The architecture of the editor is
depicted in Figure 3.

Going into the specifics, the editor takes 4 inputs:

1. Irestfull , the original character image at the 512× 512 resolution,

2. p, the 6-dimensional pose vector,

3. Iblendedcoarse , which is Iblendedhalf scaled up to 512× 512, and

4. Iflowcoarse, which is Iflowhalf scaled up to 512× 512.

The way the editor processes these inputs is quite similar to what the half-resolution rotator processes its
inputs. The pose vector is passed to the backbone directly. The input image Irestfull is convolved to create a
32 × 512 × 512 tensor. The two other inputs are passed through what we call the “coarse input processing
submodule,” which carries out the following steps.

� First, the coarse appearance flow Iflowcoarse is used to warped the original input image Irestfull to obtain the
coarse warped image Iwarped

coarse .

� Second, Iblendedcoarse , Iflowcoarse, and Iwarped
coarse are concatenated, and the resulting tensor is convolved to form a

32× 512× 512 tensor.

� Third, the result form the last step is added to the output of convolution layer that was applied to the
original image to produce a 32× 512× 512 tensor.

The resulting tensor is then passed to the backbone U-Net with attention. The output of the backbone
is processed in the same way as what the half-resolution rotator does. This produces four tensors at full
resolution: Iflowfull , I

warped
full , Idirectfull , and Iblendedfull .

Note that, if we remove the coarse input processing submodule, the architecture of the editor would be
exactly the same as the half-resolution rotator. Hence, the editor can be thought of as a network that also
rotates the body given in the original image Irestfull , but it takes the coarse inputs, I

blended
coarse and Iflowcoarse, as hints.

We will exploit this property in the training process of the editor.

2 Improved Body Rotator’s Training Details

2.1 Overview

We trained the new networks using two types of losses: L1 loss and the perceptual content loss [4]. The
half-resolution rotator’s training is divided into two phases where the first phase only uses the L1 loss, and
the second uses both. Details are discussed in Section 2.2. The editor’s training has three phases. In the
first two phases, it is trained like a rotator that operates on 512 × 512 images. In the last phase, we add
to the network units that take into account the outputs of the half-resolution rotator and continue training.
More details can be found in Section 2.3

2.2 Half-Resolution Rotator

The half-resolution rotator is trained with the following 6-termed loss that is a combination of the L1 loss
and the perceptual content loss [4]. More concretely,

LHRR = ℓL1

(
L
warped
L1 + LdirectL1 + LblendedL1

)
+ ℓpercept

(
L
warped
percept + Ldirectpercept + Lblendedpercept

)
.

4

The ℓL1 and ℓpercept are loss weights, which change once during the training process. (More on this later.)
The loss terms that have subscripts “L1” are given by

L□L1 =
∥I□half − Iposedhalf ∥1
C ×H ×W

where C, H, and W are the channels, height, and width of the tensors, respectively. The Iposedhalf is the
ground-truth posed image in the training dataset scaled down to 256× 256, and I□half are the outputs of the
half-resolution rotator as defined in Section 1.3. The loss with subscripts “percept” is given by

L□percept = Φ(I□half , I
posed
half)

and

Φ(I1, I2) =

3∑
i=1

ci
(
∥ϕi(I

rgb
1)− ϕi(I

rgb
2)∥1 + ∥ϕi(I

aaa
1)− ϕi(I

aaa
2)∥1

)
.

Here,

� ϕi(·) denote the feature tensor outputted by the ith used layer in the VGG16 network [6], and we use
the relu1 2,relu2 2, and relu3 3 layers.

� ci is the reciprocal of the number of components of ϕi(·).

� Irgb denotes the 3-channel image formed by dropping the alpha channel of image I.

� Iaaa denotes the 3-channel image formed by repeating the alpha channel of I three times.

We compute the perceptual loss as two L1 loss terms because the VGG16 network accepts an RGB image
as input whereas the images outputted by the half-resolution rotator have 4 channels. To speed up the
computation of Φ(·, ·), we evaluate it stochastically. We flip a coin with head probability of 3/4. If it turns
up head, we evaluate the term with Irgb; otherwise, we evaluate the term with Iaaa. Of course, the terms
are scaled with the reciprocal of the probability to make sure that the expectation has the right value.

Training is divided into two phases.

� In the first phase, only the L1 losses are used. In other words, ℓL1 = 1, and ℓpercept = 0. The first
phase lasts for 1 epoch (500K training examples).

� In the second phase, all loss terms are used. In particular, we set ℓL1 = 1, and ℓpercept = 0.2. The
second phase lasts for 18 epochs (9M training examples).

We used the Adam optimizer with β1 = 0.5 and β2 = 0.999. The learning rate starts at 0 and linearly
increases to 10−4 over the first 5,000 training examples. The batch size was 16.

2.3 Editor

Training has three phases. In the first two phases, the coarse input processing submodule is dropped from the
editor, making it temporarily a “full-resolution rotator.” The network is trained using the training process
of the half-resolution rotator but now with the full resolution images instead of the half-resolution ones.

In the third phase, we added the coarse input processing submodule back and train the network to
minimize the following loss:

LED = λL1

(
Lwarped
L1 + Ldirect

L1 + Lblended
L1

)
+ λpercept

(
Ldirect
half + Lblended

half + Ldirect
quad + Lblended

quad

)
.

We fixed λL1 = 1 and λpercept = 0.2. The L1 losses are given by

L□
L1 = ∥I□full − Iposedfull ∥1

5

where Iposedfull is the ground-truth posed image from the training dataset, and the I□full are the outputs of the
editor as defined in Section 1.4. The losses Ldirect

half , Lblended
half , Ldirect

quad , and Lblended
quad are perceptual losses. The

superscripts indicate the outputs of the editor that we compute the losses with, and the subscripts indicate
how the losses are computed. The “half” subscript indicates that the images are scaled down to 256× 256:

L□
half = Φ

(
Down(I□full),Down(Iposedfull)

)
where Down(·) denotes scaling a 512× 512 image down to 256× 256. The “quad” subscript indicates that
the images are divided into four quadrants so that a 512 × 512 images becomes four 4 × 256 × 256 images.
The quadrants are then used to evaluate the perceptual losses.

L□
quad =

4∑
i=1

Φ
(
Qi(I

□
full), Qi(I

posed
full)

)
where Qi(·) extracts the ith quadrant from the argument. We found that evaluating the perceptual losses
at 256× 256 rather than 512× 512 led to a network that produced sharper images.

Again, we use the same optimizers and learning rate schedule as those of the half-resolution rotator. The
first phase lasts for 1 epoch (500K examples), the second 18 epochs (9M examples), and the third 18 epochs
(9M examples).

3 Computers Used for Speed Measurements

We conducted experiments that measured time it took for the models to produce a single animation frame
on the following 3 desktop computers.

� Computer A has two Nvidia RTX A6000 GPUs, a 2.10 GHz Intel Xeon Silver 4310 CPU, and 128
GB of RAM. It represents a computer used primarily for machine learning research.

� Computer B has an Nvidia Titan RTX GPU, a 3.60 GHz Intel Core i9-9900KF CPU, and 64 GB of
RAM. It represents a high-end gaming PC.

� Computer C has an Nvidia GeForce GTX 1080 Ti GPU, a 3.70 GHz Intel Core i7-8700K CPU, and
32 GB of RAM. It represents a typical (yet somewhat outdated) gaming PC.

4 Student Face Morpher’s Loss Function

The student face morpher is trained to minimize the following loss:

Lfm = Ep∼ppose

[∥∥Sfm(Iin,p)− T fm(Iin,p)
∥∥
1
+ λfm

∥∥M ⊙ (Sfm(Iin,p)− T fm(Iin,p))
∥∥
1

]
.

Here,

� Iin is the image of the character that we want to create a specialized student model of.

� p is a pose vector, which is sampled from the training dataset of the full system.

� ppose is the uniform distribution over the poses in the training dataset.

� Sfm(·, ·) is the student face morpher.

� T fm(·, ·) is the teacher face morpher, which comes from the full system in Section 3 of the paper.

� M is a binary mask that covers all the movable facial organs: eyebrows, eyes, mouth, and chin. This
mask has to be created for each individual character. See Figure 4 for an example.

� Lastly, λfm is a weighting constant, whose value is 20 in all experiments.

6

(a) Character face (b) Mask

Figure 4: Binary mask that covers movable facial parts of a character.

References

[1] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition (2016), pp. 770–778.

[2] Ho, J., Jain, A., and Abbeel, P. Denoising diffusion probabilistic models. CoRR abs/2006.11239
(2020).

[3] Huang, X., and Belongie, S. Arbitrary style transfer in real-time with adaptive instance normaliza-
tion. In ICCV (2017).

[4] Johnson, J., Alahi, A., and Fei-Fei, L. Perceptual losses for real-time style transfer and super-
resolution. In Proceedings of European Conference on Computer Vision (ECCV) (2016).

[5] Preechakul, K., Chatthee, N., Wizadwongsa, S., and Suwajanakorn, S. Diffusion autoen-
coders: Toward a meaningful and decodable representation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2022).

[6] Simonyan, K., and Zisserman, A. Very deep convolutional networks for large-scale image recognition.
In Proceedings of the International Conference on Learning Representations (ICLR) (2015).

7

	Improved Body Rotator's Architecture Details
	Overview
	U-Net with Attention
	Half-Resolution Rotator
	Editor

	Improved Body Rotator's Training Details
	Overview
	Half-Resolution Rotator
	Editor

	Computers Used for Speed Measurements
	Student Face Morpher's Loss Function

