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Abstract

We study the problem of creating a character model that can be controlled in real time from a single
image of an anime character. A solution to this problem would greatly reduce the cost of creating avatars,
computer games, and other interactive applications.

Talking Head Anime 3 (THA3) is an open source project that attempts to directly address the problem
[34]. It takes as input (1) an image of an anime character’s upper body and (2) a 45-dimensional pose
vector and outputs a new image of the same character taking the specified pose. The range of possible
movements is expressive enough for personal avatars and certain types of game characters. However, the
system is too slow to generate animations in real time on common PCs, and its image quality can be
improved.

In this paper, we improve THA3 in two ways. First, we propose new architectures for constituent
networks that rotate the character’s head and body based on U-Nets with attention [23] that are widely
used in modern generative models. The new architectures consistently yield better image quality than
the THA3 baseline. Nevertheless, they also make the whole system much slower: it takes up to 150
milliseconds to generate a frame. Second, we propose a technique to distill the system into a small
network (< 2 MB) that can generate 512×512 animation frames in real time (≥ 30 FPS) using consumer
gaming GPUs while keeping the image quality close to that of the full system. This improvement makes
the whole system practical for real-time applications.

1 Introduction

We are interested in animating a single image of an anime character through specifying explicit pose pa-
rameters, as if controlling a rigged 3D model. Our motivation is the recent popularity of virtual YouTubers
(VTubers), which are anime characters that are performed in real time by actors with the help of recent
computer graphics technologies [44]. Typically, VTubers employ controllable layered images (aka 2.5D mod-
els) [41] created by software such as Live2D [42], E-mote [45], and Spine [17]. Because such a model can
be costly to create, a solution would make it much easier to acquire a controllable avatar and to produce
computer games and other interactive media.

The problem has received some attention from the research community [90, 35], private companies [26, 1],
and individual open-source developers [34, 80]. In particular, Khungurn proposes a neural network system
called “Talking Head Anime 3” (THA3) that can generate simple animations of a humanoid anime character,
given only a single image of the frontal view of the character’s torso [34]. When the system is run on a powerful
GPU, the character can be controlled interactively through 45 parameters, enabling rich facial expressions
and rotation of the head and the body by small angles. With NO manual modeling, the system can generate
movements that are similar to what typical hand-made VTuber models are capable of.

Nevertheless, the THA3 system has two main limitations. The first is the quality of the generated images.
When occluded parts of the character are rotated and become visible, they are often blurry. Moreover, the
system has a tendency to remove thin structures, such as hair stands after head rotation. The second is
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the system’s speed: interactive frame rates can only be achieved when using very powerful GPUs, such as
the Nvidia Titan RTX [34]. As a result, it is not yet a practical system for real-time applications such as
computer games or VTuber streaming.

This paper proposes two improvements to the THA3 system to address the two shortcomings above.
The first improvement is a new architecture for the subnetworks that rotate body parts. THA3 uses an
encoder-decoder network and a vanilla U-Net as described in the original paper [65]. Our new architecture is
based on the variant of U-Net with attention [81], commonly used in diffusion probabilistic models [23, 16].
It improves image quality under three commonly used metrics, reduces blurring in disoccluded1 areas, and
preserves thin structures better. Unfortunately, it sacrifices inference speed to do so, taking more than 100
ms to generate a frame on the Titan RTX.

The second improvement directly addresses the speed problem. The idea is to distill [22] the knowledge
of the full system into a student neural network is small (≈ 2 MB) and can generate a 512× 512 frames in
no more than 30 ms using a consumer gaming GPU. However, the student is specialized to a specific input
image and cannot animate any other. For a given character image, distillation takes several tens of hours,
but, once the process is finished, the student network can be used as a controllable character model. This
capability makes the THA system usable in real-time applications for the first time. While we do lose the
ability to change character and animate it immediately, the system remains practical because a VTuber or
a game character does not change its appearance so often (every second or every minute).

The architecture for the student network is based on the SInusoidal REpresentation Network (SIREN)
[72], which we extend to make it faster and better at preserving details of the input image. To make SIREN
faster, we make it generate images in a multi-resolution fashion similar to the way a GAN generates an
image [62]: the first few layers generate a low-resolution feature tensor, which is upscaled and passed to later
layers. To better preserve the details of the input image, we have the SIREN generate appearance flow [95]
that is used to warp the input image. The result is then combined through alpha blending with another
less detailed output, also produced directly by SIREN. We demonstrate through ablation studies that our
proposed architecture achieves a good trade-off between speed and accuracy, being able to reproduce high-
frequency details while generating large images in real time. We also propose a three-phase training process
that is effective at training our proposed model, and we verify that all of the phases are necessary to achieve
better image quality.

2 Related Works

2.1 Implicit Neural Representation

The student network is a special case of neural implicit representations (INRs) where neural networks
are used to approximate signals rather than functions that transform them. INRs often incorporate positional
encoding [77] or have unconventional activation functions [72, 67] or network structures [71]. Researchers
have applied INRs to signals such as images [75, 9], 3D surfaces [47, 57], and volume density coupled with
radiance [52]. INRs can be used to build generative models of high-resolution 3D signals, which were hard
to achieve previously [10, 6, 7, 69, 76].

While INRs can be used to directly represent articulated characters [14, 89, 59, 97], we take the view that
our signal is a parameterized collection of images like Bemana et al. [2] rather than a deformable 3D shape.
As a result, our INR employs the same image processing techniques such as warping and interpolation.
However, our work is different from Bemana et al.’s in two ways. Firstly, the parameters of our image
collection are blendshape weights and joint angles rather than those related to viewpoint, lighting, and time.
Secondly, we use an INR to approximate the outputs of a bigger neural network rather than to fill in the
gap between sparse measurements.

1“Disocclude” means “to cause to be no longer occluded.” As far as we know, the word does not appear in standard
dictionaries but has been used in a number of computer vision papers [56, 88].
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2.2 Parameter-Based Posing of a Single Image

Overall, we want to create simple animations from a single image of a humanoid character. The input is an
image of a subject (the target image), and we need to modify it so that the subject is posed according to some
specification. Based on how pose is specified, the problem can be classified into parameter-based posing
(explicitly by a pose vector), motion transfer (implicitly via an image or video of another subject), or
visual dubbing (inferred from a spoken voice record). Our system solves parameter-based posing of a single
image. As a result, we will review works that solve the same problem, excluding those that take videos or
multiple images as input. To our knowledge, there are three approaches to the problem at hand.

2.2.1 Direct Modeling

We can create a controllable model of the subject’s geometry from the target image. The common approach
is to fit a 3D morphable model (3DMM) [4, 5, 43, 39, 58, 55, 93] to the image. While earlier works are
limited in controllability and only suitable for image manipulation [3, 5, 18], recent works provide much more
control [19, 24, 40, 21, 13, 37]. A limitation of this approach is that parametric models often do not model
all visible parts. For example, models specialized to the face might ignore the hair [40, 37, 37], the neck [24],
or both [19].

While much research has been done on modeling from human photos, much less attention has been paid
to other image domains. Saragih et al. construct a 3D model of a non-human face and then deform it to
create animations [68], but they can only animate masks. Jin creates E-mode models from single anime-
style images [28]. Chen et al. study 3D reconstruction from a single anime character’s image [8] where the
reconstruction can be later animated with the help of off-the-shelf components [87, 33].

2.2.2 Generative Modeling in the Latent Space

We first train a generative model that maps a latent code to an image, engineering it so that the output
image is controllable through a pose vector. At test time, we fit a latent code to the target image.2 Animation
frames can then be generated by fixing the latent code and varying the pose vector.

Much research has been done on controlling the human face. Tewari et al. trains a network to alter latent
codes of a StyleGAN [31, 30] according to 3DMM parameters [78] and later proposes a specialized algorithm
to fit latent codes to portraits [79]. Using different methods, Kowalski et al. [36] and Deng et al. [15] train
GANs, each of whose latent codes have parts that are explicitly controllable. Recent works extend EG3D
[7], a 3D-aware GAN, so that the facial expression can be controlled [46, 86, 76]

2.2.3 Image Translation

Alternatively, we can view parameter-based posing as a special case of image translation: transforming
an image into another according to some criteria. Isola et al. [27] present a general framework based on
conditional generative adversarial networks (cGANs) [53], which is extended in various aspects by subsequent
research [96, 11, 12]. Recently, researchers have also started exploring using diffusion models for the task
[66, 85, 38].

Pumarola et al. create a network that modifies human facial features given an Action Units (AUs)
encoding of a facial expression [61]. Ververas and Zafeiriou do the same but use blendshape weights instead
of the AUs [82]. Ren et al.’s PIRenderer handles not only facial expression but also head rotation [63].
Zhang et al.’s SadTalker [92] can control a face image through 3DMM parameters by mapping them to facial
landmark positions, which are then fed to Chen et al.’s face-vid2vid model [83] to move the input image.
Nagano et al. design a conditional GAN that outputs a realistic facial texture, taking as input the target
image and renderings of a template mesh whose expression can be freely controlled [54].

The THA3 system [34] that we build upon is based on Pumarola et al.’s facial feature manipulation
technique and Zhou et al.’s image rotation technique [94]. Zhang et al. extended the first version of THA

2Optionally, the generative model can be fine-tuned to match the input image better [64].
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[32] in order to support larger rotation angles [90]. Kim et al. created a dataset that can be used to train
parameter-based posers such as PIRenderer so that they work on anime characters [35].

3 Baseline

THA3 as a whole is an image translator that takes as inputs (1) an 512× 512 image of the “half body shot”
of a humanoid anime character and (2) a 45-dimensional pose vector and then outputs a new image of the
same character, now posed accordingly. The 45 parameters allow a character to not only express various
emotions but also move its head and body like a typical professionally-created VTuber model. Out of the
45 parameters, 39 control the character’s facial expressions, and 6 control rotation of the face and the torso.

The system is composed of 5 neural networks, and they can be divided into two modules. Three networks
form a module called the face morpher whose duty is to alter the character’s facial expression. We will not
modify this module, but we will distill it into a smaller network in Section 5. The remaining two networks are
called the half-resolution rotator and the editor. Together, they form a module called the body rotator
whose duty is to rotate the head and the torso according to the 6 non-facial-expression parameters. The
half-resolution rotator operates on a half-resolution (256× 256) image obtained by downscaling the output
of the face morpher. Its output is then upscaled to 512×512 and then passed to the editor to improve image
quality before finally being returned to the user.

The two networks share the same overall structure. Each contains a backbone convolutional neural
network (CNN): the half-resolution rotator uses an encoder-decoder network, and the editor uses a U-Net.
Each backbone network outputs a feature tensor that has the same resolution as the input image. The
feature tensor can then be used to perform three image processing operations:

1. Warping. The feature is transformed into an appearance flow, a map that tells for each pixel in the
output which pixel in the input should data be copied from [95]. The appearance flow is then applied
to the input image to get a warped version of it.

2. Direct generation. The feature tensor is directly transformed into pixel values. This operation is
not limited by what is visible in the input image. It yields more plausible disoccluded parts but cannot
preserve all the details in the visible parts.

3. Blending. The feature tensor is transformed into an alpha map, which can then be used to blend the
results of other steps together to get the best features of both operations.

Outputs of the networks are generated using some combinations of the above operations.

4 Improved Network Architecture

One of the main problems of THA3 is image quality. When the body parts are rotated and disoccluded
parts become visible, these parts can be blurry. Moreover, if such parts are thin, the system tend to remove
them altogether. To alleviate the problem, we modify the networks in the body rotator module without
significantly changing their functions.

4.1 New Body Rotator Architecture

There is no change to the interface of the half-resolution rotator. It still takes (1) the input image scaled to
256×256 and (2) a pose vector, and it still outputs an appearance flow and an image of the posed character,
both at the 256× 256 resolution. On the other hand, we slightly change the editor’s interface. It now takes
in both outputs of the half-resolution rotator, scaled up to 512× 512, instead of taking just the appearance
flow like THA3’s editor. The overall structure of the modified body rotator is given in in Figure 1.

We changed all backbone networks to U-Nets with attention layers, which are now widely used in diffusion
models [23, 16] and prove to be excellent at image generation. We also changed how the networks handle its
inputs and outputs.
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Figure 1: The modified body rotator module.

� The half-resolution rotator now generates a half-resolution posed image in three steps. It (1) warps the
input image to generate one candidate output, (2) directly generates another candidate output, and
(3) alpha blends the two results together. (See the “image formation” part of Figure 3.) In THA3, the
alpha blending step is missing.

� The editor now has to take into account one additional input, so we make it fuse the input image
and the two outputs of the half-resolution rotator with a convolution layer before processing the fused
tensor with the backbone network. The rest of the network remains the same.

We refer the reader to the Appendix A for a more complete description of the changes.

4.2 Training

We use datasets created from approximately 8,000 controllable 3D anime character models we individually
collected from the Internet. Each example in the datasets contains three items: (1) an image of a character
in a “rest” post, (2) a pose vector, and (3) another image of the same character after being posed according
to the pose vector. The training dataset contains 500,000 examples, while the test dataset contains 10,000.
The two datasets do not share 3D models, ensuring clean separation between training and test data. Please
refer to the write-up of the THA3 project for how to prepare the dataset [34].

We trained the networks using two types of losses: L1 loss and the perceptual content loss [29]. The
half-resolution rotator’s training is divided into two phases where the first phase only uses the L1 loss, and
the second uses both. The editor’s training has three phases. In the first two phases, it is trained like a
rotator that operates on 512 × 512 images. In the last phase, we add to the network units that take into
account the outputs of the half-resolution rotator and continue training. Technical details on the training
process can be found in Appendix B. They include expressions for loss functions, training phases, weight
initialization, optimizers, and learning rate schedules.

4.3 Results

4.3.1 Image Quality

We compare the new body rotator against the old THA3 body rotator. For qualitative comparison, we
evaluate the networks by comparing the images they generate against the groundtruth images in the test
dataset. We use three metrics for image similarity: (a) peak signal-to-noise ratio (PSNR), (b) structural
similarity (SSIM) [84], and (c) LPIPS [91]. The averages of the metrics over the 10,000 examples of the test
dataset are reported in Table 1. We can see that the use of U-Net with attention and the additional input
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Input THA3 This section

Figure 2: Qualitative comparison between images generated by body rotator models. The artworks were
created by Mikatsuki Arpeggio [48, 51, 49, 50].

to the editor improve all the metrics. The LPIPS, in particular, sees an improvement of approximately 30%
over THA3.

Network PSNR (↑) SSIM (↑) LPIPS (↓)
THA3 [34] 22.369330 0.909369 0.048016
Section 4 22.962184 0.919532 0.033566

Table 1: Quantitative comparison of body rotator models’ per-
formance.

For qualitative comparison, we ap-
plied the networks to three hand-drawn
characters, and we show the results in
Figure 2. The characters’ faces and bod-
ies are rotated to the left of the viewer
with the largest possible angles. For
the 1st and 2nd characters, we can see
that the THA3 rotator could not produce
sharp left silhouettes of the faces, and the ribbons worn by the 2nd character are close to being completely
erased. On the other hand, the architecture we propose generated much sharper silhouettes and preserved
the ribbons better. For the 3rd character, the THA3 rotator generated blurry hair and ribbons on the right
side, while ours generated sharper results. We can also see here that our proposed architecture preserved
textures in the area better than the baseline.

4.3.2 Model Size and Speed

Table 2 compares the size and speed of THA3 system and our proposal. The new editor network is 4 times
larger than the THA3 one, but it does not significantly increase the size of the whole system because there
are four other networks that are already as large as it is. We assessed the system’s speed by measuring the
time it takes to fully process one input image and one pose, mirroring the situation in which it is used to
generate one animation frame in an application. We performed experiments on three different computers,
identified by the letters A to C, whose details are given in Appendix C. The computers have different GPUs,
ranging from a research-oriented card to a consumer-oriented gaming one. From Table 2, we can see that our
proposed architecture, while yielding higher image quality, were about 3 to 4 times slower than the THA3
system. In terms of number of frames per second (FPS), THA3 can in the best case3 achieve around 30 FPS
on a machine with very powerful GPUs, but the proposed architecture cannot even make 10 FPS under the
same settings.

3FPS inside an application can be lower due to time spent on processing user inputs and updating UI.
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System
Size (MB) Time needed to generate a frame (ms)

HRR4 Editor Total5
Computer A Computer B Computer C
(RTX A6000) (Titan RTX) (GTX 1080 Ti)

THA3 [34] 128 33 517 35.899 41.409 64.607
This section 136 137 627 125.843 116.763 159.647

Table 2: Size and speed comparison between the THA3 system and our proposed one. The times needed to
generate a frame are averages of 1,000 measurements.

Figure 3: Overall architecture of the student model.

5 Distillation

Results from the last section reveal that our quest to improve image quality results in a much slower model.
Our next task, then, is to improve image generation speed so that real-time performance is achieved on less
powerful hardware.

We first observe that the system is overly capable. At any time, we can change the input image, and
the change would be reflected on the output image immediately. Nevertheless, in computer games or in
streaming, a character does not change its appearance every second or every minute. This functionality
is thus unnecessary. By creating a model specialized to a particular input image, we may obtain a faster
model that works under real-time constraints. If we prepare many such models in advance, we may swap
the models to change characters or allow a character to change its appearance when needed.

To create such a specialized model, we rely on knowledge distillation [22], which is the practice of
training a smaller model (the student) to mimic the behavior of a larger model (the teacher). In our case,
the teacher is the full system as proposed in the last section.

All of the student models we proposed are coordinate-based networks [77] because, by construction, they
allow generating any specific subimage at a cost proportional to the subimage’s size. Moreover, unlike CNN-
based image generators, subimage generation can be done without having to generate the whole image. This
feature is beneficial for game characters and real-time streaming because, in some cases, the user might want
to depict only the head instead of the whole torso. The specific architecture we employ is the SInusoidal
REpresentation Network (SIREN) [72] because we found that it produced smooth images that fit well with
the anime style. On the other hand, a competing approach (ReLU MLP with Fourier features [77]) tend to
produce grainy artifacts [72].

5.1 Student Architecture

Like the full system, the student model contains two modules, the face morpher and the body rotator,
with the same functionality. Instead of being a collection of five big networks, they are now two small

4HRR stands for “half-resolution rotator.”
5Complete THA systems have three other networks. This column contains the sizes of all the networks combined.
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Figure 4: Architecture of the student face morpher.

Figure 5: Architecture of the student body rotator.

networks whose total size is less than 2 MB. An overview of the student’s architecture is shown in Figure 3.
The student face morpher is a SIREN with 9 fully connected layers where each hidden layer has 128

neurons. Its architecture is depicted in Figure 4. It is trained to generate a 128×128 area of the input image
that contains the character’s movable facial organs (eyebrows, eyes, mouth, and jaw). The SIREN receives
as input a pixel position (2 dimensions) and a facial pose (39 dimensions), and it produces an RGBA pixel
(4 dimensions). Its size is only 475 KB.

The student body rotator’s architecture is more complicated because it needs to generate much larger
outputs (512× 512 images) in real time. A vanilla SIREN like the student face morpher would be too slow
because it has to operate on tensors with a spatial size of 512× 512 at all of its layers. To improve speed, we
divide the image generation process into three substeps where the network would operate on tensors with
spatial resolutions of 128×128 first, then 256×256, and lastly 512×512. Each substep has 3 fully connected
layers, except for the last one which has 4, resulting in a network with 10 such layers. Moreover, in order to
preserve fine details of the input image, the network does not generate the output image directly. Instead,
it uses the image formation process employed by the teacher’s body rotator. In particular, the network is
trained to generate (1) an appearance flow, (2) an RGBA image, and (3) an alpha map. The output image
is formed by first using the appearance flow to warp the input character image and then alpha blending the
warped image with the directly generated RGBA image. The model size’s is about 1.3 MB. The architecture
of the student body rotator is depicted in Figure 5.
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5.2 Student Training

5.2.1 Face Morpher

The student face morpher is trained to minimize the L1 differences between its outputs and those generated
by the teacher face morpher. The loss function has two terms. The first is the L1 difference between the
whole outputs, and the second is the L1 difference between areas that contain movable facial parts. We
weigh the second term 20 times more than the first because the movable parts are small compared to the
whole face. The precise definition of the loss is given in Appendix D.

At training time, the character image is fixed, and the pose vectors are sampled uniformly from the
training dataset of the full system. Training lasts 2 epochs (1M examples), and the batch size is 8. We
use the Adam optimizer with β1 = 0.9 and β2 = 0.999. The learning rate starts at 10−4 and decays to
3.33 × 10−5, 1 × 10−5 and then 3.33 × 10−6 after 200K, 500K, and 800K training examples, respectively.
Training takes about an hour and a half on a computer with four V100 GPUs.

5.2.2 Body Rotator

Recall first that the body rotator uses the same image formation process as the teacher body rotator. The
outputs of the last fully-connected layer are (1) an appearance flow Iflow which is immediately used to
generate a warped image Iwarped from the fixed character image, (2) an RGBA image Idirect, and (3) an
alpha map Ialpha. Then, Iwarped, Idirect and Ialpha are then combined with alpha blending to generate the
final output image Ifinal. Because the teacher also generates these data as well, we distinguish between those
generated by the student with the superscript “S” (such as ISflow, I

S
warped) and those generated by the teacher

with the superscript “T” (such as ITdirect, I
T
final).

The student body rotator is trained to minimize a 4-termed loss where each term involves one of the
generated data above:

Lbr = λflowLflow + λwarpedLwarped + λdirectLdirect + λfinalLfinal

where L□ = ∥IS□ − IT□∥1, and □ can be replaced with the suffixes in the above equation. The λ-variables are
weights that change throughout the training process, which is divided into three phases as shown in Table 3.
We can see that the the first phase focuses on training the direct generation, the second on the warping, and
the third on the final output.

Phase # Examples λflow λwarped λdirect λfinal

#1 ≤ 400K 0.50 0.25 2.00 0.25
#2 ≤ 800K 5.00 2.50 1.00 1.00
#3 ≤ 1.5M 1.00 1.00 1.00 10.00

Table 3: Training phases of the student body rotator.

Much like what we do with the student
face morpher, we also sample pose vectors from
the training dataset of the full system, use the
Adam optimizer with β1 = 0.9 and β2 = 0.999,
and set the batch size to 8. However, train-
ing now lasts for 3 epochs (1.5M examples).
Learning rate starts from 10−4 and decays to
3 × 10−5, 10−5, and 3 × 10−6 after we have
shown 200K, 600K, and 1.3M training examples, respectively. Training takes about 10 hours on a computer
with four V100 GPUs. We have not measured training time on other computers, but we surmise that it
would take several ten hours on a machine with a single GPU.

5.3 Results

We assess a model by using it to pose characters according to 1,000 fixed poses taken from the test dataset in
Section 4.2. For each posed image, we compute the PSNR with respect to the corresponding image generated
by the teacher model. We then record the average of the 1,000 resulting PSNR values.

5.3.1 Comparison Against the Teacher
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System
Time needed to generate a frame (ms)

Computer A Computer B Computer C
(RTX A6000) (Tital RTX) (GTX 1080 Ti)

THA3 [34] 35.899 41.409 64.607
Section 4 125.840 116.760 159.640
Student model 12.523 15.098 22.091

Table 4: Comparison between average time required to generate a frame of animation by the THA3 system,
the teacher model (Section 4), and the student model.

Architecture PSNR (dB)
Time needed to generate a frame (ms)

Computer A Computer B Computer C
(RTX A6000) (Tital RTX) (GTX 1080 Ti)

Vanilla SIREN 38.259 21.319 33.086 54.937
Section 5.1 w/o multi-res 38.923 24.337 34.883 57.394
Section 5.1 38.881 12.523 15.098 22.091

Table 6: An ablation study on the architecture of the student model.

Character PNSR (dB)
Top [51] 36.156
Middle [49] 36.048
Bottom [50] 34.543

Table 5: Average PSNR of images gener-
ated by student models trained to animate
the characters from Figure 2.

As mentioned in Section 5.1, the student model is much smaller
than the full system: 1.8 MB versus 627 MB. It is also around
8 times faster to generate a single animated frame as can be
seen in Table 4. Compared to the THA3 system, it is about
3 times faster and thus can now achieve real-time animation
(≥ 30 FPS) on Computer C, which has a standard consumer
GPU.

As for the quality of generated images, we trained student
models on the three characters in Figure 2. We report the
averaged PSNRs in Table 5, which range from 34 dB to around 36 dB. This means that the average error is
about 2% of the maximum pixel value. Qualitatively, it is hard to spot large differences between outputs of
the students and the teacher, but a student model might ignore extremely fine details such as the black dot
that represents the nose as can be seen in Figure 6 and Figure 7.

5.3.2 Ablation Study on Student Network Architecture

In this section, we show that the proposed architecture yielded improvement over simpler alternatives. We
compare our architecture against (a) a vanilla SIREN that generates the output image directly, and (b) our
proposed architecture where the body rotator is modified so that it always operates at the 512×512 resolution.
We trained the three architectures to animate a specific character image [74], and we evaluated them with
the average PSNR metric. We also measured the average time it took to generate an animation frame on
the 3 computers used in Section 4.3.2. The statistics are given in Table 6. For qualitative comparison, we
show generated images in Figure 6.

We see in Table 6 that the student architectures’ PSNR values are comparable to one another. However,
Figure 6 reveals that the vanilla SIREN architecture is qualitatively much worse than the other two because it
cannot reproduce fine face details, such as the eyebrows, the mouth shapes, and the highlights on the pupils.
Preserving these fine details necessitates the more complicated image formation steps. The architecture
without multi-resolution SIREN is slightly more accurate than the proposed architecture. However, it is
very hard to spot differences between their generated images in Figure 6. The advantage of the proposed
architecture is its speed: Table 6 shows that it is two times faster than the architecture without multi-
resolution SIREN. In other words, the multi-resolution design maintains accuracy while making the network
significantly faster.
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Vanilla SIREN Section 5.1 w/o multi-res Section 5.1 Teacher (Section 4)

Figure 6: Qualitative comparison between images generated by the teacher and three student architectures.
The character is © Touhoku Zunko · Zundamon Project [73].

5.3.3 Ablation Study on Student Training Process

Model
Training phases

PSNR (dB)
#1 #2 #3

A ✓ 29.308
B ✓ 29.118
C ✓ ✓ 29.484
D ✓ 38.026
E ✓ ✓ 38.668
F ✓ ✓ 37.399
G ✓ ✓ ✓ 38.881

Table 7: Quantitative comparison between
student models trained with and without
specific training phases.

The training process for the student model has 3 training
phases with different weights on loss terms. To show the neces-
sity of the phases, we trained student models on the character
image in the last section, ablating the training phases while
keeping the rest of the settings the same. We report the mod-
els’ average PSNR values in Table 7. We see that employing
all phases yielded the best score. Omitting Phase #1 resulted
in significantly worse image quality. This manifests qualita-
tively as noticeable differences in the shape of the rotated faces
in Figure 7. Models that were trained with Phase #1 have
PSNR scores of around 38, showing that they approximate the
teacher’s overall outputs well. However, there are visible degra-
dations in the details. Model D did not reproduce the high-
lights on the pupils. Model E and Model F produced artifacts
around the headband. Moreover, Model F also yielded jagged
edges on one side of the head. Model G, which experienced all training phases, achieved the highest PSNR
score and produced the least amount of artifacts, showing the necessity of all the training phases.

5.3.4 Miscellaneous Results

Student models are fast and lightweight that they can be executed inside a web browser and still generate
animation in real time. In the supplementary material, we include two demo web applications. One allows
the user to pose characters by manipulating UI widgets. The other makes characters imitate the user’s
movement as captured by a web camera.
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Model A Model B Model C Model G (Sec 5.1)

Model D Model E Model F Teacher

Figure 7: Qualitative comparison between outputs of models in Table 7. Problematic areas are highlight
with red rectangles.

6 Conclusion

We proposed improvements to the Talking Head Anime 3 (THA3) system, increasing its image quality and
speeding it up so that it can generate smooth animation in real time with a consumer gaming GPU. The
latter improvement makes the system practical as a streaming tool for the first time. The main insight is that
we can use a more expensive architecture (U-Net with attention) to get better image quality and then distill
the improved model to small and fast students. Our technical contribution includes an effective architecture
for the student model (multi-resolution SIREN with warping and blending) and an algorithm to train it.

There are still several limitations to our work. The image quality, while greatly improved by the new
architecture for the body rotator, can still be improved further. The system can only move facial organs
rotate of the face and the torso by small angles. Lastly, while the student model is lightweight enough to
run on a consumer gaming GPU, it can still cannot be run on devices such as tablets or mobile phones. We
hope to address these problems in future works.
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A Full System’s Architecture Details

A.1 U-Net with Attention

The new backbones of the half-resolution rotator and editor are U-Net with attention [23], which are fre-
quently used in diffusion models. We base our architecture on conditional U-Nets in the diffusion autoencoder
paper by Preechakul et al. [60]. There, the U-Net takes as input a feature tensor, a time value, and a 1D
conditioning vector. The time value and the conditioning vector are mingled tensors derived from the input
feature tensor through adaptive instance normalization (AdaIN) units [25] that are parts of residual blocks
[20]. A residual block would have two AdaIN units that are applied in succession: the first for time and
the second for conditioning vector. In the diffusion autoencoder paper, the conditioning vector is a 512-
dimensional vector. In our case, the conditioning vector is the 6-dimensional pose vector.6 For our networks,
the time value is always 0 and is totally redundant. We kept the code related to time embedding in place in
order to reduce implementation effort.

The configurations for the backbone networks are given in Table 8. Both networks scale down the feature
tensors to 16× 16 before scaling them back up to the original resolution. Attention blocks are only present
at the 16× 16 resolution. The bottleneck part of each network has 4 residual blocks alternating with three
attention blocks. (In other words, there are 3 + 2 = 5 attention blocks in total.) Each attention block has 8
attention heads.

6While the full pose vector has 45 parameters, only 6 that concern the movement of the body are relevant to the networks
that we modify.
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Hyperparameter Half-resolution rotator Editor
image resolution 256× 256 512× 512
# base channels 64 32
channel multipliers 1, 2, 4, 4, 4 1, 2, 4, 8, 8, 8
# residual blocks per level 1 1
# bottleneck residual blocks 4 4
resolution with attention blocks 16 16
# attention heads 8 8

Table 8: Configurations of the U-Net with attention backbones for the half-resolution rotator and editor.

The half-resolution rotator and the editor differ not only on the configurations of their backbones but how
the backbones are “wrapped” by extra units to that they conform to the networks’ interfaces. We discuss
these extra units in the two following subsections.

A.2 Half-Resolution Rotator

The half-resolution rotator is depicted in Figure 8. It takes as input

1. Iresthalf , a 4× 256× 256 RGBA image of the character in rest pose obtained by downscaling the original
input image, and

2. p, a 6-dimensional pose vector.

Because the U-Net with attention backbone takes in a 64×256×256 tensor as input, Iresthalf must be converted
to this shape with a convolution layer. The backbone produces another 64× 256× 256 feature tensor, which
is then used to perform several image processing operations. (See Section 3.)

� Warping. The feature tensor is passed to a convolution layer to produce an appearance flow Iflowhalf of

size 2× 256× 256. It is then used to warp the input image (Iresthalf) to produce a warped image Iwarped
half .

� Direct generation. The feature tensor is converted to a 4× 256× 256 RGBA image, denoted by Idirecthalf .

� Blending. The feature tensor is converted to a 1×256×256 alpha map, which is then used to blend the
warped image Iwarped

half and the directly generated image Idirecthalf together. The result is called Iblendedhalf .

The half-resolution rotator outputs Iflowhalf , I
warped
half , Idirecthalf , and Iblendedhalf . These image are used for training.

However, at test time, Iflowhalf and Iblendedhalf are used by the next network, the editor.

A.3 Editor

The architecture of the editor is depicted in Figure 9. It takes 4 inputs:

1. Irestfull , the original character image at the 512× 512 resolution,

2. p, the 6-dimensional pose vector,

3. Iblendedcoarse , which is Iblendedhalf scaled up to 512× 512, and

4. Iflowcoarse, which is Iflowhalf scaled up to 512× 512.

The way the editor processes these input is quite similar to what the half-resolution rotator does. The pose
vector is passed to the backbone directly. The input image Irestfull is convolved to create a 32 × 512 × 512
tensor. The two other inputs are passed through what we call the “coarse input processing submodule,”
which carries out the following steps.
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Figure 8: The new half-resolution rotator.

Figure 9: The new editor.
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� First, the coarse appearance flow Iflowcoarse is used to warped the original input image Irestfull to obtain the
coarse warped image Iwarped

coarse .

� Second, Iblendedcoarse , Iflowcoarse, and Iwarped
coarse are concatenated, and the resulting tensor is convolved to form a

32× 512× 512 tensor.

� Third, the result form the last step is added to the output of convolution layer that was applied to the
original image to produce a 32× 512× 512 tensor.

The resulting tensor is then passed to the backbone U-Net with attention. The output of the backbone
is processed in the same way as what the half-resolution rotator does. This produces four tensors at full
resolution: Iflowfull , I

warped
full , Idirectfull , and Iblendedfull .

Note that, if we remove the coarse input processing submodule, the architecture of the editor would be
exactly the same as the half-resolution rotator. Hence, the editor can be thought of as a network that also
rotates the body given in the original image Irestfull , but it takes the coarse inputs, I

blended
coarse and Iflowcoarse, as hints.

We will exploit this property in the training process of the editor.

B Full System’s Training Details

B.1 Half-Resolution Rotator

The half-resolution rotator is trained with the following 6-termed loss that is a combination of the L1 loss
and the perceptual content loss [29]. More concretely,

LHRR = ℓL1

(
L
warped
L1 + LdirectL1 + LblendedL1

)
+ ℓpercept

(
L
warped
percept + Ldirectpercept + Lblendedpercept

)
.

The ℓL1 and ℓpercept are loss weights, which change once during the training process. (More on this later.)
The loss terms that have subscripts “L1” are given by

L□L1 =
∥I□half − Iposedhalf ∥1
C ×H ×W

where C, H, and W are the channels, height, and width of the tensors, respectively. The Iposedhalf is the
groundtruth posed image in the training dataset scaled down to 256× 256, and I□half are the outputs of the
half-resolution rotator as defined in Section A.2. The loss with subscripts “percept” is given by

L□percept = Φ(I□half − Iposedhalf )

and

Φ(I1, I2) =

3∑
i=1

ci
(
∥ϕi(I

rgb
1 )− ϕi(I

rgb
2 )∥1 + ∥ϕi(I

aaa
1 )− ϕi(I

aaa
2 )∥1

)
.

Here,

� ϕi(·) denote the feature tensor outputted by the ith used layer in the VGG16 network [70], and we use
the relu1 2,relu2 2, and relu3 3 layers.

� ci is the reciprocal of the number of components of ϕi(·).

� Irgb denotes the 3-channel image formed by dropping the alpha channel of image I.

� Iaaa denotes the 3-channel image formed by repeating the alpha channel of I three times.
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We compute the perceptual loss as two L1 loss terms because the VGG16 network accepts an RGB image
as input whereas the images outputted by the half-resolution rotator have 4 channels. To speed up the
computation of Φ(·, ·), we evaluate it stochastically. We flip a coin with head probability of 3/4. If it turns
up head, we evaluate the term with Irgb; otherwise, we evaluate the term with Iaaa. Of course, the terms
are scaled with the reciprocal of the probability to make sure that the expectation has the right value.

Training is divided into two phases.

� In the first phase, only the L1 losses are used. In other words, ℓL1 = 1, and ℓpercept = 0. The first
phase lasts for 1 epoch (500K training examples).

� In the second phase, all loss terms are used. In particular, we set ℓL1 = 1, and ℓpercept = 0.2. The
second phase lasts for 18 epochs (9M training examples).

We used the Adam optimizer with β1 = 0.5 and β2 = 0.999. The learning rate starts at 0 and linearly
increases to 10−4 over the first 5,000 training examples. The batch size was 16.

B.2 Editor

Training has three phases. In the first two phases, the coarse input processing submodule is dropped from the
editor, making it temporarily a “full-resolution rotator.” The network is trained using the training process
of the half-resolution rotator but now with the full resolution images instead of the half-resolution ones.

In the third phase, we added the coarse input processing submodule back and train the network to
minimize the following loss:

LED = λL1

(
Lwarped
L1 + Ldirect

L1 + Lblended
L1

)
+ λpercept

(
Ldirect
half + Lblended

half + Ldirect
quad + Lblended

quad

)
.

We fixed λL1 = 1 and λpercept = 0.2. The L1 losses are given by

L□
L1 = ∥I□full − Iposedfull ∥1

where Iposedfull is the groundtruth posed image from the training dataset, and the I□full are the outputs of the
editor as defined in Section A.3. The losses Ldirect

half , Lblended
half , Ldirect

quad , and Lblended
quad are perceptual losses. The

superscripts indicate the outputs of the editor that we compute the losses with, and the subscripts indicate
how the losses are computed. The “half” subscript indicates that the images are scaled down to 256× 256:

L□
half = Φ

(
Down(I□full),Down(Iposedfull )

)
where Down(·) denotes scaling a 512× 512 image down to 256× 256. The “quad” subscript indicates that
the images are divided into four quadrants so that a 512 × 512 images becomes four 4 × 256 × 256 images.
The quadrants are then used to evaluate the perceptual losses.

L□
quad =

4∑
i=1

Φ
(
Qi(I

□
full), Qi(I

posed
full )

)
where Qi(·) extracts the ith quadrant from the argument. We found that evaluating the perceptual losses
at 256× 256 rather than 512× 512 led to a network that produced sharper images.

Again, we use the same optimizers and learning rate schedule as those of the half-resolution rotator. The
first phase lasts for 1 epoch (500K examples), the second 18 epochs (9M examples), and the third 18 epochs
(9M examples).
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(a) Character face (b) Mask

Figure 10: Binary mask that covers movable facial parts of a character.

C Computers Used for Speed Measurements

We conducted experiments that measured time it took for the models to produce a single animation frame
on the following 3 desktop computers.

� Computer A has two Nvidia Nvidia RTX A6000 GPUs, a 2.10 GHz Intel Xeon Silver 4310 CPU, and
128 GB of RAM. It represents a computer used primarily for machine learning research.

� Computer B has an Nvidia Titan RTX GPU, a 3.60 GHz Intel Core i9-9900KF CPU, and 64 GB of
RAM. It represents a high-end gaming PC.

� Computer C has an Nvidia GeForce GTX 1080 Ti GPU, a 3.70 GHz Intel Core i7-8700K CPU, and
32 GB of RAM. It represents a typical (yet somewhat outdated) gaming PC.

D Student Face Morpher’s Loss Function

The student face morpher is trained to minimize the following loss:

Lfm = Ep∼ppose

[∥∥Sfm(Iin,p)− T fm(Iin,p)
∥∥
1
+ λfm

∥∥M ⊙ (Sfm(Iin,p)− T fm(Iin,p))
∥∥
1

]
.

Here,

� Iin is the image of the character that we want to create a specialized student model of.

� p is a pose vector, which is sampled from the training dataset of the full system.

� ppose is the uniform distribution over the poses in the training dataset.

� Sfm(·, ·) is the student face morpher.

� T fm(·, ·) is the teacher face morpher, which comes from the full system in Section 3.

� M is a binary mask that covers all the movable facial organs: eyebrows, eyes, mouth, and chin. This
mask has to be created for each individual character. See Figure 10 for an example.

� Lastly, λfm is a weighting constant, whose value is 20 in all experiments.
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