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Abstract

We study the problem of creating a character model that

can be controlled in real time from a single image of an

anime character. A solution would greatly reduce the cost

of creating avatars, computer games, and other interactive

applications.

Talking Head Anime 3 (THA3) is an open source project

that attempts to directly address the problem [40]. It takes

as input (1) an image of an anime character’s upper body

and (2) a 45-dimensional pose vector and outputs a new

image of the same character taking the specified pose. The

range of possible movements is expressive enough for per-

sonal avatars and certain types of game characters.

THA3’s main limitation is its speed. It can achieve in-

teractive frame rates (≈ 20 FPS) only if it is run on a very

powerful GPU (Nvidia Titan RTX or better). Based on the

insight that avatars and game characters do not need to

change their appearance every so often, we propose a tech-

nique to distill the system into a small student neural net-

work (< 2 MB) specific to a particular character. The stu-

dent model can generate 512 × 512 animation frames in

real time (≥ 30 FPS) using consumer gaming GPUs while

preserving the image quality of the teacher model. For the

first time, our technique makes the whole system practical

for real-time applications.

1. Introduction

We are interested in animating a single image of an

anime character through specifying explicit pose parame-

ters, as if controlling a rigged 3D model. We are motivated

by the recent popularity of virtual YouTubers (VTubers):

anime characters which are animated in real time with the

help of recent computer graphics technologies [52]. Typi-

cally, VTubers models are layered images (aka 2.5D mod-

els) [48] created by tools such as Live2D [49], E-mote [53],

and Spine [23]. Such a model can be costly to create, so a

solution to our problem would make it much easier to ac-

quire a controllable avatar.

Figure 1. We present a way to distill the full THA3 system [40],

which can animate an arbitrary anime character slowly, to a small

model (< 2MB) specialized to a single character that can generate

animation in real-time.

The problem has received some attention from the re-

search community [41,102,103], private companies [1,34],

and individual open-source developers [40, 87]. In partic-

ular, Khungurn proposes a neural network system called

“Talking Head Anime 3” (THA3) that can generate simple

animations of a humanoid anime character, given only a sin-

gle image of the frontal view of the character’s torso [40].

With it, a character can be controlled interactively through

45 parameters, enabling rich facial expressions and rotation

of the head and the body by small angles. The afforded

movements that are similar to what typical hand-made VTu-

ber models are capable of, and they are generated with no

manual modeling. Nevertheless, THA3 is not yet practical

for real-time applications. Its main shortcoming is its speed:

interactive frame rates can only be achieved when using

very powerful GPUs, such as the Nvidia Titan RTX [40].

In this paper, we directly address the speed problem. The

idea is to distill [28] the knowledge of the full system (the

teacher) into a new neural network (the student) that is small



(< 2 MB) and can generate a 512 × 512 frame in no more

than 30 ms using a consumer gaming GPU. The student,

however, can only animate a specific input image. Distilla-

tion takes several ten hours, but, once finished, the student

can be used as a controllable character model. This capabil-

ity makes THA3 usable in real-time applications for the first

time. While we cannot change character and animate it im-

mediately, the system remains practical because a VTuber

or a game character does not change its appearance so often

(every second or every minute). Our solution thus trades

offline preprocessing time for fast online performance in a

way that suits the application at hand.

The architecture for the student network is based on the

SInusoidal REpresentation Network (SIREN) [79], which

we extend to make it faster and better at preserving details

of the input image. In particular, we make it generate im-

ages in a multi-resolution fashion: the first few layers gen-

erate a low-resolution feature tensor, which is upscaled and

passed to later layers. In this way, the network does not have

to process 512 × 512 tensors at all layers, greatly speeding

up inference. The SIREN has a pathway that generates out-

put pixels directly, but the network has not enough capacity

to generate all details present in the input image. To solve

this problem, we have the SIREN also generate an appear-

ance flow [108], which is used to warp the input image.

The result is then alpha blended with the directly generated

pixels. We propose a three-phase training process for the

proposed model, and we verified that all of the phases are

necessary to achieve better image quality.

As a minor contribution, we also address an image qual-

ity problem of THA3. When occluded parts of the charac-

ter are rotated and become visible, they often appear blurry.

Moreover, THA3 has a tendency to remove thin structures,

such as hair stands, after head rotation. We updated the ar-

chitectures of THA3’s subnetworks that rotate body parts

from an encoder-decoder network and a vanilla U-Net as

described in the original paper [70] to a variant of U-Net

with attention [88], now widely used in diffusion probabilis-

tic models [20, 29]. The new architecture improves image

quality according to three commonly used metrics, reduces

blurring in disoccluded1 areas, and preserves thin structures

better. The system becomes slower due to larger and more

complicated networks, but distilling it yields better student

models.

2. Related Works

2.1. Implicit Neural Representation

The student network is a neural implicit representation

(INR), a neural network used to approximate signals rather

1“Disocclude” means “to cause to be no longer occluded.” As far as we

know, the word does not appear in standard dictionaries but has been used

in a number of computer vision papers [63, 99].

than functions that transform them. INRs often incorporate

positional encoding [84] or have unconventional activation

functions [72, 79] or network structures [78]. Researchers

have applied INRs to signals such as images [13, 82], 3D

surfaces [58, 64], and volume density coupled with radi-

ance [59]. INRs can be used to build generative models

of high-resolution 3D signals, which were previously hard

to achieve [10, 11, 14, 74, 83].

While INRs can be used to directly represent articulated

characters [18, 66, 100, 110], we follow Bemana et al. [6]

and view our signal as a parameterized collection of images

rather than a deformable 3D shape. As a result, our student

model employs image processing tools such as warping and

interpolation.

2.2. Parameter-Based Posing of a Single Image

We want to create simple animations from a single im-

age of a humanoid character. The input is an image of a

subject (the target image), and we need to modify it so that

the subject is posed according to some specification. Based

on how the pose is specified, the problem can be classified

as parameter-based posing (explicitly by a pose vector),

motion transfer (implicitly via an image or video of an-

other subject), or visual dubbing (inferred from a spoken

voice record). Our system solves parameter-based posing.

As a result, we shall review works that solve the same prob-

lem and exclude those that take videos or multiple images

as input [21, 26, 30, 31, 33, 75–77, 92, 94, 96, 98, 101, 106].

However, we will compare our system against two of these

systems [26,33] to illustrate the advantages of our approach.

To our knowledge, there are three approaches to the

problem at hand.

Direct modeling. We can create a controllable model of

the subject’s geometry from the target image. The common

approach is to fit a 3D morphable model (3DMM) [8, 9,

46, 51, 62, 65, 107] to it. While earlier works are limited in

controllability and only suitable for image manipulation [7,

9, 24], recent works provide much more control [17, 25, 27,

32, 44, 47]. A drawback of this approach is that parametric

models often do not cover all visible parts. For example,

models specialized to the face might ignore the hair [44,47],

the neck [32], or both [25].

While there is much research on modeling from human

photos, much less attention has been paid to other image

domains. Saragih et al. construct controllable 3D models

of non-human faces, but they can only animate masks [73].

Jin creates E-mode models from single anime-style im-

ages [36]. Chen et al. study 3D reconstruction from a

single anime character’s image [12] where the reconstruc-

tion can be later animated with the help of off-the-shelf

components [39, 97].



Generative modeling in the latent space. Another

approach is to train a generative model that maps a latent

code to an image, engineering it so that the output is

controllable through a pose vector. At test time, we first

fit a latent code to the target image.2 Animation frames

can then be generated by fixing the latent code and varying

the pose vector. Tewari et al. train a network to alter

latent codes of a StyleGAN [37, 38] according to 3DMM

parameters [85] and later propose a specialized algorithm

to fit latent codes to portraits [86]. Using different methods,

Kowalski et al. [43] and Deng et al. [19] train GANs whose

latent codes have parts that are explicitly controllable.

Recent works extend EG3D [11], a 3D-aware GAN, so that

the facial expression can be controlled [54, 83, 95]

Image translation. Alternatively, we can view

parameter-based posing as a special case of image trans-

lation: transforming an image into another according to

some criteria. Isola et al. [35] present a general frame-

work based on conditional generative adversarial networks

(cGANs) [60], which is extended in various aspects by sub-

sequent research [15, 16, 109]. Recently, researchers have

also started exploring using diffusion models for the task

[45, 71, 93].

Pumarola et al. create a network that modifies human

facial features given an Action Units (AUs) encoding of a

facial expression [67]. Ververas and Zafeiriou do the same

but use blendshape weights instead of the AUs [89]. Ren

et al.’s PIRenderer handles not only facial expression but

also head rotation [68]. Zhang et al.’s SadTalker [105] can

control a face image through 3DMM parameters by map-

ping them to facial landmark positions, which are then fed

to Wang et al.’s face-vid2vid model [90] to move the in-

put image. Nagano et al. design a conditional GAN that

outputs a realistic facial texture, taking as input the target

image and renderings of a template mesh whose expression

can be freely controlled [61].

Several works exclusively target faces of anime charac-

ters, such as those by Zhang et al. [102, 103]. Kim et al.

created a dataset that can be used to train parameter-based

posers, such as PIRenderer, so that they work on anime

faces [41]. Unlike these works, ours deals with the whole

torso.

3. Baseline and Its Improvement

THA3 as a whole is an image translator. It takes as inputs

(1) a 512×512 image of the “half-body shot” of a humanoid

anime character and (2) a 45-dimensional pose vector. It

then outputs a new image of the same character, now posed

accordingly. The 45 parameters allow a character to not

2Optionally, the generative model can be fine-tuned to match the input

image better [69].

only express various emotions but also move its head and

body like a typical professionally-created VTuber model.

Among the parameters, 39 control facial expression, and 6

control rotation of the face and the torso.

The system has 5 neural networks that can be divided

into two modules. Three networks form the face morpher,

whose duty is to alter the character’s facial expression. We

will not modify this module, but we will distill it into a

smaller network in Section 4. The remaining two networks

are called the half-resolution rotator and the editor. To-

gether, they form a module called the body rotator, whose

duty is to rotate the head and the torso according to the 6

non-facial-expression parameters. The half-resolution rota-

tor operates on a half-resolution (256×256) image obtained

by downscaling the output of the face morpher. Its output

is then upscaled to 512× 512 and then passed to the editor,

which in turn generates the final output that is returned to

the user.

The two networks share the same overall structure. Each

contains a backbone convolutional neural network (CNN):

the half-resolution rotator uses an encoder-decoder net-

work, and the editor uses a U-Net. Each backbone network

outputs a feature tensor that has the same resolution as the

input image. The feature tensor can then be used to perform

three image processing operations.

Warping. The feature tensor is transformed into an ap-

pearance flow, a map that tells, for each pixel in the output,

which pixel in the input should data be copied from [108].

It is applied to the input image to get a warped version.

Direct generation. The feature tensor is transformed

into pixel values directly. Because this operation is not lim-

ited by what is visible in the input image, it yields more

plausible disoccluded parts but cannot preserve all the de-

tails in the visible parts.

Blending. The feature tensor is transformed into an al-

pha map, which can then be used to blend the results of

other steps together.

Outputs of the two networks are generated using some

combinations of the above operations.

3.1. Improved Architectures

When THA3 rotates the body in such a way that disoc-

cluded parts become visible, these parts can appear blurry.

Moreover, if rotated parts are thin, THA3 tends to remove

them altogether. As mentioned earlier, we propose to dis-

till THA3 to a student network. Clearly, the student would

inherit the teacher’s behavior including all of its image qual-

ity problems. It is thus advisable to improve THA3 before

distilling it to get better student models. We do so by mod-

ifying the networks in the body rotator module without sig-

nificantly changing their functions.

We changed all backbone networks to U-Nets with at-

tention. The architecture is now widely used in diffusion



models [20, 29] and proves to be excellent at image gen-

eration. We slightly altered the interfaces of the networks.

There is no change to the half-resolution’s interface: it still

outputs the posed imaged and the appearance flow used to

generate the former. On the other hand, the editor take both

outputs, scaled up to 512 × 512, instead of just the appear-

ance flow like the THA3’s editor. We also changed how the

networks internally handle its inputs and outputs. Details of

these changes can be found in the supplementary material.

To trained the changed networks, we used datasets cre-

ated from approximately 8,000 controllable 3D anime char-

acter models we individually collected from the Internet.

Each example in the datasets contains three items: (1) an

image of a character in a “rest” post, (2) a pose vector, and

(3) another image of the same character after being posed

according to the pose vector. The training dataset contains

500,000 examples, while the test dataset contains 10,000.

The two datasets do not share 3D models, ensuring clean

separation between training and test data. Please refer to

the write-up of the THA3 project for how to prepare the

datasets [40]. Other details on the training process, such as

loss functions, optimizers, and batch sizes, can be found in

the supplementary material.

4. Distillation

As we shall see in Section 5, THA3 cannot achieve inter-

active frame rates without a powerful GPU. Moreover, the

improved networks in Section 3.1 trade inference speed for

image quality. Our task is thus to improve image genera-

tion speed so that real-time performance is achieved on less

powerful hardware.

We observe that the system is overly capable. At any

time, we can change the input image, and the change would

be reflected on the output immediately. Nevertheless, in

computer games and streaming, a character does not change

its appearance every second or every minute. By creating

a model that is specialized to a particular input image, we

may obtain a faster model. To do so, we rely on knowl-

edge distillation, the practice of training a smaller model

(the student) to mimic the behavior of a larger model (the

teacher = the full system) [28].

Our student models are coordinate-based networks [84].

By construction, they allow generating any specific subim-

age at a cost proportional to the subimage’s size. Moreover,

unlike CNN-based image generators, subimage generation

can be done without having to generate the whole image.

This feature is beneficial for game characters and real-time

streaming because, in some cases, the user might want to

depict only the head instead of the whole torso. We use the

SInusoidal REpresentation Network (SIREN) [79] architec-

ture because we found that it produced smooth images that

fit well with the anime style. On the other hand, a compet-

ing approach [84] tends to produce grainy artifacts [79].

Figure 2. Overall architecture of the student model.

Figure 3. Architecture of the student face morpher.

4.1. Student Architecture

The student model contains two modules, the face mor-

pher and the body rotator, with the same functionalities

as those of the full system. An overview of the student’s

architecture is shown in Figure 2.

The student face morpher (Figure 3) is a SIREN with 9

fully connected layers, and each hidden layer has 128 neu-

rons. It is trained to generate a 128 × 128 area of the input

image that contains movable facial organs (eyebrows, eyes,

mouth, and jaw). It receives a pixel position (2 dimensions)

and a facial pose (39 dimensions), and it produces an RGBA

pixel (4 dimensions). Its size is only 475 KB.

The student body rotator (Figure 4) needs to generate

512 × 512 images in real time. A vanilla SIREN would be

too slow because it has to operate on tensors of that size

at all of its layers. To improve speed, we introduce three

substeps where the network would operate on tensors with

spatial resolution of 128 × 128 first, then 256 × 256, and

lastly 512×512. Each substep has 3 fully connected layers,

except for the last one which has 4, resulting in a network

with 10 such layers. After this, the network uses the image

formation process employed by the teacher’s body rotator

to generate the final output. In particular, it is trained to

generate (1) an appearance flow, (2) an RGBA image, and



Figure 4. Architecture of the student body rotator.

(3) an alpha map. The output image is formed by first us-

ing the appearance flow to warp the input character image

and then alpha blending the warped image with the directly

generated RGBA image. The model size is about 1.3 MB.

4.2. Student Training

Face morpher. The student face morpher is trained to

minimize the L1 differences between its outputs and those

generated by the teacher face morpher. The loss function

has two terms. The first is the L1 difference between the

whole outputs, and the second is the L1 difference between

areas that contain movable facial parts. We weigh the sec-

ond term 20 times more than the first because the movable

parts are small compared to the whole face. The precise

definition of the loss is given in the supplementary material.

At training time, the character image is fixed, and

the pose vectors are sampled uniformly from the train-

ing dataset of the teacher. Training lasts 2 epochs (1M

examples) with batch size of 8. We use the Adam opti-

mizer [42] with (β1, β2) = (0.9, 0.999). The learning

rate starts at 10−4 and decays to 3.33 × 10−5, 10−5 and

then 3.33 × 10−6 after 200K, 500K, and 800K training

Phase # Examples λflow λwarp λdir λfin

#1 ≤ 400K 0.50 0.25 2.00 0.25

#2 ≤ 800K 5.00 2.50 1.00 1.00

#3 ≤ 1.5M 1.00 1.00 1.00 10.00

Table 1. Training phases of the student body rotator.

examples, respectively. Training takes about an hour and a

half on a computer with four V100 GPUs.

Body rotator. Recall that the body rotator uses the same

image formation process as the teacher body rotator. The

outputs of the last fully-connected layer are (1) an appear-

ance flow Iflow, (2) an RGBA image Idir, and (3) an alpha

map Iα. The flow Iflow is used to generate a warped im-

age Iwarp from the input character image. Then, Iwarp and

Idir are alpha blended according to Iα to generate the final

output image Ifin. The teacher also generates these data as

well. We distinguish between those generated by the stu-

dent with the superscript “S” (e.g., ISflow, ISwarp) and those

generated by the teacher with the superscript “T ” (e.g., ITdir,

ITfin).

The student body rotator is trained to minimize a loss,

each of whose term involves one of the data above:

  \mcal {L}_{\mrm {br}} = \lambda _{\mrm {flow}} \mcal {L}_{\mrm {flow}} + \lambda _{\mrm {warp}} \mcal {L}_{\mrm {warp}} + \lambda _{\mrm {dir}} \mcal {L}_{\mrm {dir}} + \lambda _{\mrm {fin}} \mcal {L}_{\mrm {fin}}, \label {eqn:student-body-rotator-loss}       

where L□ = ∥IS
□

− IT
□
∥1, and □ can be replaced with

the suffixes in the above equation. The λs are weights that

change throughout the training process, which is divided

into three phases as shown in Table 1. We can see that the

the first phase focuses on training the direct generation, the

second the warping, and the third the final output.

For training, we sample pose vectors from the training

dataset of the full system, use the Adam optimizer with

(β1, β2) = (0.9, 0.999), and set the batch size to 8. Training

now lasts for 3 epochs (1.5M examples), which is about 10

hours on a computer with four V100 GPUs. Learning rate

starts at 10−4 and decays to 3× 10−5, 10−5, and 3× 10−6

after we have shown 200K, 600K, and 1.3M training exam-

ples, respectively.

5. Results

5.1. Performance of Improved Baseline

In Section 3.1, we change THA3’s body rotator. We

show in this subsection the results of the change.

Image quality. We compare the new body rotator

against the THA3 baseline. We quantitatively evaluate the

networks by comparing the images they generate against the

ground-truth images in the test dataset, using three metrics

for image similarity: (a) peak signal-to-noise ratio (PSNR),

(b) structural similarity (SSIM) [91], and (c) Learned Per-

ceptual Image Patch Similarity (LPIPS) [104]. Table 2



Network PSNR (↑) SSIM (↑) LPIPS (↓)
THA3 22.369330 0.909369 0.048016

Section 3.1 22.962184 0.919532 0.033566

Table 2. Quantitative comparison of body rotator models’ perfor-

mance.

Input THA3 Section 3.1

Figure 5. Qualitative comparison between images generated by

body rotator models. The artworks were created by Mikatsuki

Arpeggio [2–5].

shows the averages of the metrics over the 10,000 exam-

ples of the test dataset. The new architecture improves all

the metrics. The LPIPS, in particular, sees an improvement

of approximately 30% over THA3.

For qualitative comparison, we applied the networks

to three hand-drawn characters, and we show the results

in Figure 5. The characters’ faces and bodies are rotated

to the left of the viewer with the largest possible angles.

For the 1st and 2nd characters, the THA3 rotator cannot

produce sharp left silhouettes, and the ribbons worn by

the 2nd character are close to being completely erased.

On the other hand, the new architecture generates much

sharper silhouettes and preserve the ribbons better. For

the 3rd character, the THA3 rotator generates blurry hair

and ribbons on the right side, while ours generates sharper

results.

Model size and speed. Table 3 compares the size and

speed of THA3 and our proposal. The new editor network

is 4 times larger than the THA3 one, but it does not signif-

icantly increase the size of the whole system because there

are four other networks that are already as large as it is.

We assessed the system’s speed by measuring the time it

takes to fully process one input image and one pose. We

performed experiments on three different computers. Com-

puter A has two Nvidia RTX A6000 GPUs and represents

a computer used for machine learning research. Computer

System

Size (MB)

HRR∗ Editor Total∗∗

THA3 128 33 517

Section 3.1 136 137 627

System

Time needed to generate a frame (ms)

Computer A Computer B Computer C

(RTX A6000) (Titan RTX) (GTX 1080 Ti)
THA3 35.899 41.409 64.607

Section 3.1 125.843 116.763 159.647

Table 3. Size and speed comparison between the THA3 system

and our proposed one. The times needed to generate a frame

are averages of 1,000 measurements. (*) HRR stands for “half-

resolution rotator.” (**) Complete THA systems have three other

networks. This column contains the sizes of all the networks com-

bined.

Character PSNR (↑) SSIM (↑) LPIPS (↓)

Top 36.156 0.9914 0.0061

Middle 36.048 0.9883 0.0066

Bottom 34.543 0.9863 0.0087

Table 4. Average PSNR, SSIM, and LPIPS between images gen-

erated by student models trained to animate the characters from

Figure 5 and those generated by the teacher models.

B has an Nvidia Titan RTX GPU and represents a high-

end gaming PC. Computer C has an Nvidia GeForce GTX

1080 Ti GPU and represents a typical, yet outdated gam-

ing PC. Other details of the computers, such as their CPUs

and memory, can be found in the supplementary material.

We can see that our proposed architecture, while yielding

higher image quality, are about 3 to 4 times slower than

THA3. However, because of better image quality, it serves

as a better teacher.

5.2. Performance of Student Models

We will evaluate multiple student modes in this section.

For each such a model, we use it to pose characters

according to 1,000 fixed poses taken from the test dataset

in Section 3.1. For each posed image, we compute the

PSNR, SSIM, and LPIPS with respect to the corresponding

image generated by the teacher model (also described in

Section 3.1). We record the average of the 1,000 metric

values.

Comparison against the teacher. We trained a student

models for each of the three characters in Figure 5, and

we report the models’ metrics in Table 4. The SSIMs and

LPIPSs are close to their best possible values (1 and 0, re-

spectively), and the PSNRs range from 34 dB to around 36

dB, meaning that the average error is about 2% of the maxi-

mum pixel value. It is hard to spot large differences between

the outputs, but a student model might ignore extremely fine

details, such as the black dot that represents the nose, seen

in Figure 6.

A student model is around 8 times faster than the teacher



System

Time needed to generate a frame (ms)

Comp A Comp B Comp C

(RTX A6000) (Titan RTX) (GTX 1080 Ti)
THA3 35.899 41.409 64.607

Section 3.1 125.840 116.760 159.640

Student model 12.523 15.098 22.091

Table 5. Comparison between average time required to generate a

frame of animation by the THA3 system, the teacher model (Sec-

tion 3.1), and the student model.

Architecture PSNR
Time per a frame (ms)

Computer A Computer B Computer C

Vanilla SIREN 38.259 21.319 33.086 54.937

Section 4.1
38.923 24.337 34.883 57.394

w/o multi-res
Section 4.1 38.881 12.523 15.098 22.091

Table 6. An ablation study on the architecture of the student

model.

Model
Training phases

PSNR (↑) SSIM (↑) LPIPS (↓)
#1 #2 #3

A ✓ 29.308 0.9739 0.0164

B ✓ 29.118 0.9729 0.0167

C ✓ ✓ 29.484 0.9746 0.0160

D ✓ 38.026 0.9946 0.0054

E ✓ ✓ 38.668 0.9954 0.0036

F ✓ ✓ 37.399 0.9943 0.0060

G ✓ ✓ ✓ 38.881 0.9956 0.0033

Table 7. Quantitative comparison between student models trained

with and without specific training phases.

model and 3 times faster than THA3, as can be seen in

Table 5. It can now achieve real-time animation (≥ 30 FPS)

on Computer C, which has an outdated gaming GPU.

Ablation study on student network architecture. We

compare our architecture against (a) a vanilla SIREN that

generates the output image directly and (b) our proposed

architecture where the body rotator is modified so that it

always operates at the 512 × 512 resolution. We trained

the three architectures to animate a specific character image

[81], and we evaluated them with the average PSNR metric.

We also measured the average time it took to generate a

frame. Results are available in Table 6 and Figure 6.

In Table 6, the PSNR values are close to one another.

However, Figure 6 reveals that the vanilla SIREN architec-

ture is qualitatively much worse than the other two because

it cannot reproduce fine face details, such as the eyebrows,

the mouth shapes, and the highlights on the pupils. This

shows that the more complicated image formation steps

are required to preserve them. The architecture without

multi-resolution SIREN is slightly more accurate than our

architecture, but it is hard to identify differences between

their images in Figure 6. Hence, multi-resolution SIREN

retains much of the accuracy of full-resolution SIREN

while being about two times faster.

Section 4.1 Teacher

Vanilla SIREN w/o multi-res Section 4.1 (Section 3.1)

Figure 6. Qualitative comparison between images generated by

the teacher and three student architectures. The character is

© Touhoku Zunko · Zundamon Project [80].

Model A Model B Model C Model G (Sec 4.1)

Model D Model E Model F Teacher

Figure 7. Qualitative comparison between outputs of models in

Table 7. Problematic areas are highlight with red rectangles.

Ablation study on student training process. The

training process has 3 training phases. To show their

necessity, we trained student models on the character

image in the last study, ablating the training phases while

keeping the rest of the settings the same. We report the

metrics in Table 7. Employing all phases yields the best

scores. Omitting Phase #1 results in significantly worse

image quality. This manifests qualitatively as noticeable

differences in the shape of the rotated faces in Figure 7.

Models that were trained with Phase #1, on the other hand,

approximate the teacher’s outputs well, achieving PSNR

scores of around 38. When one or more of the other phases

is missing, there are visible degradations. Model D does

not reproduce the highlights on the pupils. Model E and

Model F have artifacts around the headband. Moreover,

Model F also yields jagged edges on one side of the head.

Model G, which experienced all training phases, achieves

the best scores and produces the least amount of artifacts.

5.3. Comparison Against Other Systems

We compare our teacher and student models to THA3

and two SOTA systems for image animation: AnimateAny-



Method PSNR (↑) SSIM (↑) LPIPS (↓)

Full image (512 × 512)

THA3 25.344 0.9094 0.0422

Teacher model (Section 3.1) 25.650 0.9143 0.0294

Student model 25.754 0.9154 0.0330

AnimateAnyone 19.935 0.7955 0.1441

Face crop (192 × 192)

THA3 19.990 0.7133 0.1061

Teacher model (Section 3.1) 20.488 0.7361 0.0741

Student model 20.698 0.7432 0.0835

AnimateAnyone 15.672 0.5096 0.1837

LivePortrait (actor video driven) 15.074 0.4796 0.2552

Table 8. Quantitative comparison of our systems against the THA3

baseline and other SOTA systems.

one [33] and LivePortrait [26]. We use an unofficial open-

source implementation [50] for the former3 and the official

one for the latter.

For quantitative comparison, we recorded an actor

singing a song, resulting in a video that lasts 25 seconds and

contains 759 frames. We converted the actor’s movement

to a sequence of pose vectors with an off-the-shelf motion

capture software [22]. We then use the pose vectors to ani-

mate three 3D models [55–57] and used the resulting video

frames as ground truths. We also rendered the models in

rest positions and used the renderings as target images. We

drove THA3, the teacher model (Section 3.1), and the stu-

dent models with the extracted pose vectors. We annotated

the 3D models with face keypoints, rendered videos depict-

ing them and the models’ skeletons, and used the results to

drive AnimateAnyone. Lastly, we drove LivePortrait with

the actor video.4

In Table 8, we report the PSNR, SSIM, and LPIPS met-

rics, computed against the ground-truth videos and aver-

aged over the three 3D models. For each metric, there are

two numbers. One was computed using the full 512 × 512
images, and the other using the 192 × 192 crop around

the face. Because LivePortrait can only animate faces, it

does not have numbers computed with full images. We

can see that the teacher model (Section 3.1) has the best

LPIPS scores, and we were surprised that the student mod-

els achieved slightly better PSNR and SSIM even though

they were trained to mimic the teacher. The THA systems

(including THA3) achieve much better scores than other

baselines, showing the advantages of systems specialized

to anime characters.

For qualitative comparison, we used the systems to an-

imate three hand-drawn characters. The animations are

available in the supplementary material, and we show

frames of a character in Figure 8. We can clearly see how

our systems and THA3 perform much better than other sys-

tems. AnimateAnyone can neither properly rotate the head

3There has been no official code/model release at the time of writing.
4We also tried driving LivePortrait with the rendered ground-truth

videos, but the results were worse because LivePortrait could not pick up

movements of facial organs from faces of 3D models.

Actor AnimateAnyone [33] LivePortrait [26]

THA3 Teacher model (Section 3.1) Student model

Figure 8. Qualitative comparison of our systems against THA3

baseline and other SOTA systems.

nor move the eyes and the mouth, and LivePortrait’s out-

puts break down once the actor starts moving his head more

vigorously.

5.4. Miscellaneous Results

Student models are so fast and lightweight that they can

be executed inside a web browser and still generate anima-

tions in real time. In the supplementary material, we in-

clude two demo web applications. One can pose characters

through UI widgets. The other makes characters imitate the

user’s movement as captured by a web camera.

6. Conclusion

We improved the THA3 system, speeding it up so that

it can generate animation in real time on a common gam-

ing GPU. The improvement makes the system practical as

a streaming tool for the first time. The main insight is that

we can use a more expensive architecture (U-Net with at-

tention) to get better image quality and then distill the im-

proved model to small and fast students. Our technical con-

tribution includes an effective architecture for the student

model and an algorithm to train it.

There are still several limitations to our work. While the

student model can run in real-time on a computer with a

dedicated gaming GPU, it still cannot do the same on de-

vices such as tablets or mobile phones. We also think that

image quality can be improved further, and we would like

to expand the possible movements the system can generate.

We hope to address these problems in future work.

We also recognize that our system may be used to gen-

erate harmful and deceptive contents. In particular, it can

be used to impersonate existing VTubers. Further research,

such as a watermarking system, is needed to distinguish the

outputs of our system from other modes of animation gen-

eration.
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