\( \def\sc#1{\dosc#1\csod} \def\dosc#1#2\csod{{\rm #1{\small #2}}} \newcommand{\dee}{\mathrm{d}} \newcommand{\Dee}{\mathrm{D}} \newcommand{\In}{\mathrm{in}} \newcommand{\Out}{\mathrm{out}} \newcommand{\pdf}{\mathrm{pdf}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\ve}[1]{\mathbf{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\etal}{{et~al.}} \newcommand{\sphere}{\mathbb{S}^2} \newcommand{\modeint}{\mathcal{M}} \newcommand{\azimint}{\mathcal{N}} \newcommand{\ra}{\rightarrow} \newcommand{\mcal}[1]{\mathcal{#1}} \newcommand{\X}{\mathcal{X}} \newcommand{\Y}{\mathcal{Y}} \newcommand{\Z}{\mathcal{Z}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \newcommand{\z}{\mathbf{z}} \newcommand{\tr}{\mathrm{tr}} \newcommand{\sgn}{\mathrm{sgn}} \newcommand{\diag}{\mathrm{diag}} \newcommand{\Real}{\mathbb{R}} \newcommand{\sseq}{\subseteq} \newcommand{\ov}[1]{\overline{#1}} \DeclareMathOperator*{\argmax}{arg\,max} \DeclareMathOperator*{\argmin}{arg\,min} \)

Introduction to Conditional Random Fields

This note is written as I read "An Introduction to Conditional Random Fields" by Sutton and McCallum. However, I took material from some sections from some other sources.


1   Modeling

1.1   Notations

1.2   Undirected Graphical Models

1.3   Graph Representations

1.4   Directed Graphical Models

1.4.1   Example: Naive Bayes

1.4.2   Example: Hidden Markov Model

1.5   Discriminative Analogues to Directed Graphical Models

1.5.1   Multinomial Logistic Regression and Naive Bayes

1.5.2   Linear Chain CRFs and HMMs

1.6   General CRFs


2   Inference

2.1   Exact Algorithms

2.1.1   Linear Chain CRFs

2.1.2   Exact Algorithm for Trees

2.1.3   Belief Propagation

2.2   Approximate Algorithms

2.2.1   Markov Chain Monte Carlo

2.2.2   Variational Algorithms

2.2.3   Mean Field Approximation

2.2.3.1   Example: Ising Model

2.2.4   Loopy Belief Propagation

2.2.4.1   Entropy of Tree-Structured Graphical Models

Last modified: 2021/09/19