Proof. Let $k$ and $k'$ be reproducing kernels. Then, for any $f \in \Hil$, we have that \begin{align*} \langle f, k_\ve{x} \rangle_\Hil &= \langle f, k'_\ve{x} \rangle_\Hil \\ \langle f, k_\ve{x} - k'_{\ve{x}} \rangle_\Hil &= 0. \end{align*} Using a property of the inner product, this means $k_\ve{x} - k'_{\ve{x}} = 0$, and so $k_\ve{x} = k'_{\ve{x}}$. $\square$
Proof. Suppose that there exists a reproducing kernel $k$. Then, $\delta_\ve{x}(f) = f(\ve{x}) = \langle f, k_{\ve{x}} \rangle_\Hil$. Applying the Cauchy-Schwarz inequiality, we have that $|\delta_\ve{x}(f)| = |f(\ve{x})| \leq \| f\|_\Hil \| k_{\ve{x}} \|_\Hil$, so we can choose $M_\ve{x} = \| k_{\ve{x}} \|_\Hil$.
If the evaluation functional $\delta_\ve{x}$ is bounded, then it is continuous. By the Riesz representation theorem, there is a unique $g_\ve{x} \in H$ such that $\delta_\ve{x}(f) = \langle f, g_\ve{x} \rangle_\Hil$. Define $k(\ve{x}', \ve{x}) = g_{\ve{x}}(\ve{x}')$. It is clear that $k_\ve{x} = g_\ve{x} \in \Hil$. As a result, $k$ is a reproducing kernel of $\Hil$. $\square$
Proof. We have that, for all $\ve{x} \in \mathcal{X}$, \begin{align*} \| f(\ve{x}) - g(\ve{x}) \| = |\delta_{\ve{x}}(f-g)| \leq c_\ve{x} \| f - g \|_{\Hil} = 0. \end{align*} As a result, $f(\ve{x}) = g(\ve{x})$. $\square$
Proof. We have that \begin{align*} \sum_{i=1}^n \sum_{j=1}^n c_i c_j k(\ve{x}_j, \ve{x}_n) &= \sum_{i=1}^n \sum_{j=1}^n c_i c_j \langle \phi(\ve{x}_i), \phi(\ve{x}_j) \rangle_V \\ &= \sum_{i=1}^n \sum_{j=1}^n \langle c_i \phi(\ve{x}_i), c_j \phi(\ve{x}_j) \rangle_V \\ &= \bigg\langle \sum_{i=1}^n c_i \phi(\ve{x}_i), \sum_{i=1}^n c_j \phi(\ve{x}_j) \bigg\rangle_V \\ &= \bigg\langle \sum_{i=1}^n c_i \phi(\ve{x}_i), \sum_{i=1}^n c_i \phi(\ve{x}_i) \bigg\rangle_V \\ &= \bigg\| \sum_{i=1}^n c_i \phi(\ve{x}_i) \bigg\|^2_V \\ &\geq 0. \end{align*} So, $k$ is positive definite. $\square$
Proof. We have that $k(\ve{x}, \ve{x}') = \langle k_{\ve{x}}, k_{\ve{x}'} \rangle_{\Hil}$. So, we can set $\phi(\ve{x}) = k_{\ve{x}}$.
Proof. Let $f = \sum_{i=1}^\infty f_i e_i \in \Hil$. We have that \begin{align*} k_{\ve{x}} = \sum_{j=1}^\infty \lambda_k e_j(\ve{x}) e_j \end{align*} Hence, \begin{align*} \langle f, k_\ve{x} \rangle = \sum_{j=1}^\infty \frac{f_j \lambda_j e_j(\ve{x})}{\lambda_j} = \sum_{j=1}^\infty f_j e_j(\ve{x}) = f(\ve{x}). \end{align*} So, $k$ is a reproducing kernel. $\square$
Last modified: 2020/08/07